Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

Karen A. Crouse, ${ }^{\text {a }}$ Kar Teng Chew, ${ }^{\text {a }}$ Bohari M. Yamin, ${ }^{\text {b }}$ * Seik Weng $\mathrm{Ng}^{\mathrm{c}}$ and M. T. H. Tarafder ${ }^{\text {d }}$
${ }^{\text {a }}$ Department of Chemistry, Universiti Putra Malaysia, Serdang, Selangor, Malaysia, ${ }^{\mathbf{b}}$ School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia, ${ }^{\mathbf{c}}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dDepartment of Chemistry,
Rajshahi University, Rajshahi 60205, Bangladesh

Correspondence e-mail:
bohari@pkrisc.cc.ukm.my

## Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
$R$ factor $=0.037$
$w R$ factor $=0.096$
Data-to-parameter ratio $=18.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

# Hydrazine carbodithioic acid pyridinium-2-yl methyl ester chloride 

The title compound, $\left[\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{~S}_{2}\right]^{+} \cdot \mathrm{Cl}^{-}$, exists as an ionic compound of a dithiocarbazate system, with a zwitterionic ${ }^{+} \mathrm{H}_{3} \mathrm{NNCS}^{-}$moiety and a protonated pyridine ring. The $\mathrm{C}-\mathrm{S}$ thione bond distance of the zwitterionic moiety [1.708 (2) $\AA$ ] is longer than the normal double bond and the $\mathrm{C}-\mathrm{N}$ of the carbazate moiety has double-bond character. The crystal packing is stabilized by intramolecular hydrogen bonds, which form a two-dimensional network perpendicular to $b$.

## Comment

Unlike many dithiocarbazate compounds, such as $S$-methyldithiocarbazate (Mattes \& Waber, 1980) and $S$-benzyldithiocarbazate (Shanmuga Sundara Raj et al., 2000), the title compound, (I), exists in ionic form, with a zwitterionic N3/N2/ C7/S2 moiety, the protonated N1 as cation and a chloride anion (Fig. 1). However, the organic cation maintains the preferred configuration, which is cis for the ammonium group across the $\mathrm{C}=\mathrm{N}$ bond, and trans for the pyridiniummethylene group across the $\mathrm{C}-\mathrm{S}$ bond, both relative to the terminal thiono S atom. The C7-N2 bond length of 1.296 (2) $\AA$ indicates its double-bond character, while C7-S2 [1.708 (2) $\AA$ ] is longer than the normal $\mathrm{C}=\mathrm{S}$ bond of between 1.65 and $1.68 \AA$ for dithiocarbazate (Mattes \& Waber, 1980; Shanmuga Sundara Raj et al., 2000; Tarafder et al., 2001), but close to the zwitterionic $\mathrm{C}-\mathrm{S}$ bond length in dithiocarbamic acid [1.712 (2) Å; Yamin et al., 2002]. Although the N2-N3 bond length of 1.437 (2) $\AA$ is within the normal range, it is longer than the normal $\mathrm{N}-\mathrm{N}$ distance for a carbazate system [1.396 A for $S$-benzyldithiocarbazate; Shanmuga Sundara Raj et al., 2000]. The bond lengths and angles of the picolyl group are within normal ranges (Allen et al., 1987).


All H atoms bonded to N atoms (one at N 1 and three at N 3 ) participate in hydrogen bonding (Table 2). Two of them are intramolecular ( $\mathrm{N} 1-\mathrm{H} 1 n \cdots \mathrm{~N} 2$ and $\mathrm{N} 3-\mathrm{H} 3 n 2 \cdots$ S2). Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds connect the molecules into a two-dimensional network perpendicular to the $b$ axis (Fig. 2).

Received 12 December 2002
Accepted 2 January 2003
Online 17 January 2003


Figure 1
ORTEPII (Johnson, 1976) view of the title compound, with displacement ellipsoids drawn at the $50 \%$ probability level. H atoms are shown as circles of arbitrary radii.


Figure 2
Packing diagram of the title compound, viewed down the $c$ axis. Dashed lines denote the $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ interactions.

The picolyl N1/C1/C2/C3/C4/C5/C6/C7 and zwitterionic N3/ N2/S1/S2 moieties are planar, with maximum deviations of 0.017 (2) $\AA$ at N1 and 0.034 (1) $\AA$ at S1, respectively. The two planes make a dihedral angle of $64.16(6)^{\circ}$.

## Experimental

Potassium hydroxide ( $11.4 \mathrm{~g}, 0.2 \mathrm{~mol}$ ) was completely dissolved in 70 ml of $90 \%$ ethanol and cooled in ice. To the cooled solution hydrazine hydrate ( $10 \mathrm{~g}, 0.2 \mathrm{~mol}$ ) was added slowly with stirring. A
solution of carbon disulfide ( $15.2 \mathrm{~g}, 0.2 \mathrm{~mol}$ ) in ethanol ( 23 ml ) was added dropwise from a burette, with constant stirring, for about 1 h . The temperature of the mixture was kept below 263 K during the addition. During this time, two layers formed. The yellow oil in the lower layer was then separated using a separation funnel, dissolved in $40 \%$ ethanol ( 100 ml ) and cooled in ice. 2-Picolylchloride hydrochloride ( $32.8 \mathrm{~g}, 0.2 \mathrm{~mol}$ ) was completely dissolved in 100 ml of $80 \%$ ethanol and added slowly to the above solution with vigorous mechanical stirring. The resulting light-green product was filtered, washed with distilled water and dried. The product was recrystallized from absolute ethanol.

## Crystal data

$\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{~S}_{2}{ }^{+} \cdot \mathrm{Cl}^{-}$
$M_{r}=235.75$
Tetragonal, $I 4_{1} / a$
$a=16.5700$ (8) $\AA$
$c=15.3576$ (7) $\AA$
$V=4216.7$ (3) $\AA^{3}$
$Z=16$
$D_{x}=1.485 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 6222 reflections
$\theta=1.8-28.3^{\circ}$
$\mu=0.72 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, yellow
$0.55 \times 0.49 \times 0.38 \mathrm{~mm}$

## Data collection

| Bruker Smart APEX CCD area- | 2545 independent reflections |
| :---: | :--- |
| $\quad$ detector diffractometer | 1920 reflections with $I>2 \mathrm{~s}(I)$ |
| $\omega$ scans | $R_{\text {int }}=0.023$ |
| Absorption correction: multi-scan | $\theta_{\max }=28.3^{\circ}$ |
| $(S A D A B S ;$ Sheldrick, 1996 $)$ | $h=-21 \rightarrow 21$ |
| $T_{\min }=0.694, T_{\max }=0.773$ | $k=-21 \rightarrow 21$ |
| 12702 measured reflections | $l=-10 \rightarrow 19$ |

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.096$
$S=0.93$
2545 reflections
135 parameters

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0651 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.45$ e $\AA^{-3}$
$\Delta \rho_{\min }=-0.15 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

| S1-C6 | $1.820(2)$ | $\mathrm{N} 1-\mathrm{C} 1$ | $1.335(2)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{S} 1-\mathrm{C} 7$ | $1.764(2)$ | $\mathrm{N} 2-\mathrm{C} 7$ | $1.296(2)$ |
| $\mathrm{S} 2-\mathrm{C} 7$ | $1.708(2)$ | $\mathrm{N} 2-\mathrm{N} 3$ | $1.437(2)$ |
| $\mathrm{N} 1-\mathrm{C} 5$ | $1.337(2)$ |  |  |
| $\mathrm{C} 6-\mathrm{S} 1-\mathrm{C} 7$ | $103.9(1)$ | $\mathrm{N} 2-\mathrm{C} 7-\mathrm{S} 2$ | $129.5(1)$ |
| $\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1$ | $124.1(2)$ | $\mathrm{N} 2-\mathrm{C} 7-\mathrm{S} 1$ | $116.7(1)$ |
| $\mathrm{C} 7-\mathrm{N} 2-\mathrm{N} 3$ | $112.2(2)$ | $\mathrm{S} 2-\mathrm{C} 7-\mathrm{S} 1$ | $113.8(1)$ |

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 1-\mathrm{H} 1 n \cdots \mathrm{~N} 2$ | $0.83(1)$ | $2.35(2)$ | $2.934(2)$ | $128(2)$ |
| $\mathrm{N} 1-\mathrm{H} 1 n \cdots \mathrm{Cl} 1$ | $0.83(1)$ | $2.66(2)$ | $3.237(2)$ | $127(2)$ |
| $\mathrm{N} 1-\mathrm{H} 1 n \cdots \mathrm{Cl} 1^{\mathrm{i}}$ | $0.83(1)$ | $3.13(2)$ | $3.580(2)$ | $117(2)$ |
| $\mathrm{N} 3-\mathrm{H} 3 n 1 \cdots \mathrm{Cl} 1^{\mathrm{i}}$ | $0.86(1)$ | $2.35(1)$ | $3.162(2)$ | $158(2)$ |
| $\mathrm{N} 3-\mathrm{H} 3 n 2 \cdots \mathrm{~S} 2$ | $0.88(1)$ | $2.33(2)$ | $2.925(2)$ | $126(2)$ |
| $\mathrm{N} 3-\mathrm{H} 3 n 3 \cdots \mathrm{Cl} 1^{\mathrm{ii}}$ | $0.86(1)$ | $2.26(1)$ | $3.108(2)$ | $170(2)$ |

Symmetry codes: (i) $\frac{1}{2}-x, \frac{3}{2}-y, \frac{1}{2}-z$; (ii) $\frac{5}{4}-y, \frac{1}{4}+x, \frac{1}{4}-z$.

The $\mathrm{N}-\mathrm{H}$ distances were restrained to 0.85 (1) $\AA$. The other H atoms were included using a riding model, with fixed $\mathrm{C}-\mathrm{H}$ bond lengths of $0.93 \AA$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the Universiti Putra Malaysia and Universiti Kebangsaan Malaysia for research facilities, and the Malaysian Government for research grants Nos. 09-02-04-0296 and 09-02-02-0163.

## References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Mattes, R. \& Waber, H. (1980). J. Chem. Soc. Dalton Trans. pp. 423-425.
Shanmuga Sundara Raj, S., Yamin, B. M., Yussof,Y. A., Tarafder, M. T. H., Fun, H.-K. \& Crouse, K. A. (2000). Acta Cryst. C56, 1236-1237.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Tarafder, M. T. H., Saravanam, N., Crouse, K. A., Yamin, B. M., Fun, H.-K., Raj, S. S. S. \& Razak, I. A. (2001). Z. Kristallogr. New Cryst. Struct. 216, 283284.

Yamin, B. M., Kadir, M. A., Zin, M. Z. M., Razak, I. A. \& Fun, H.-K. (2002). Acta Cryst. E58, o293-o295.

